

Track: The Power Connection: Electric Generation for Gas Utilities

Unit #3: Electric Generation Process

Presentation Outline

- •Electric Generation Methods
- Processes for Power Generation
- •Role of Natural Gas in Electric Generation
- Energy Storage Systems

FR®NTIER energy

 $\hbox{@}$ Energy Solutions Center Inc. & Frontier Energy – All Rights Reserved

© Energy Solutions Center Inc.

•Thermal •Hydro •Nuclear •Renewable •Geothermal

Electric Generation

Electric Generation Methods – The technologies and techniques through which energy is captured from a source and converted into electricity.

"What?"

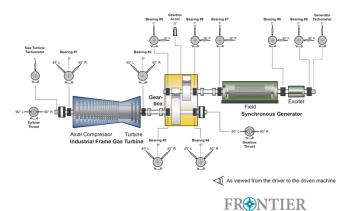
Electric Generation Processes – The systems and steps involved in converting energy from a source into electricity.

"How?"

FR®NTIER energy

© Energy Solutions Center Inc. & Frontier Energy – All Rights Reserved

© Energy Solutions Center Inc.


Work to Electricity – Rotational Generators

Electric Generators are a key component of most energy generation methods. **Rotational generators** capture work in the form of a rotating shaft, and use it to spin configurations of magnets and coils of wire. The changing magnetic fields created by this rotation induce current in the wires, which is electricity.

Rotational generators are the traditional, scaleable way to convert large amounts of mechanical energy to electricity. **Gear-boxes** help convert high-torque, slower spin to lower-torque, faster spin and visa versa, conserving energy.

Wind and hydro power use air and water to turn a generator shaft directly.

Fuel-based energy generation must use heat and resulting pressures from fuel directly, or a separate medium like water or steam to turn a turbine, which can in turn spin a generator shaft.

© Energy Solutions Center Inc. & Frontier Energy – All Rights Reserved

Work to Electricity – Linear Generators

More recent **linear generators** capture work in the form of linear motion, and use it to move magnets or coils of wire back and forth. Just like a rotational generator, the changing magnetic fields created by this motion induces current in the wires, which is electricity.

Linear generators can be smaller and have fewer moving parts than rotational generators, and can be useful in capturing otherwise inaccessible energy such as that from:

- Waves
- Vibrations
- Pressure

A recent development in this area is using linear generators to capture energy in natural gas pressure reducing stations. Energy was used to pressurize the gas for transport, and it can be partially captured on the back end when depressurizing.

FR®NTIER energy

energy

 $\hbox{@}$ Energy Solutions Center Inc. & Frontier Energy – All Rights Reserved

© Energy Solutions Center Inc.

Thermal Generation

Thermal generation uses the burning of fuel to drive mechanical processes that can be converted into electricity.

Source: Fuels such as natural gas, oil, coal, etc.

Mechanism: Burning fuel exerts kinetic forces on objects through the phase changes, expansion, and/or convection of gases and fluids.

Some key equipment: **Engines, turbines, generators.**

Upstream Processes: Many fuels must be extracted from the Earth and processed in some way before transport or burning.

Original Source: Solar energy captured in ancient food chains and modified through geological processes over millions of years.

© Energy Solutions Center Inc. & Frontier Energy - All Rights Reserved

Hydro

Hydro generation uses the natural movement of water to drive mechanical processes that can be converted into electricity.

Source: Movement of water between elevations.

Mechanism: Moving or falling water exerts kinetic force on objects as it is pulled downward by gravity.

Some key equipment: **Dams, reservoirs, turbines, generators.**

Upstream Processes: Water in geographically advantageous locations must usually be restricted, creating reservoirs which modify landscapes.

Original Source: Solar energy captured in the evaporation of water and creation of wind to cause precipitation in higher elevations.

© Energy Solutions Center Inc. & Frontier Energy – All Rights Reserved

© Energy Solutions Center Inc.

rgress Work in Progress Work in Progress

Nuclear

Nuclear fission generation uses heat generated from the natural **decay** of heavy radioactive materials into lighter ones at an atomic level to drive mechanical processes that can be converted into electricity.

Source: Radioactive materials and the quantum phenomena their atoms experience.

Mechanism: A controlled chain reaction of decaying radioactive materials generates heat, which can in turn be converted to kinetic forces on objects through the boiling and expansion of water into steam.

Some key equipment: Reactor, coolant, turbines, generators.

Upstream Processes: Radioactive material must be extracted from the Earth and processed before transport and use.

Original Source: Solar phenomena before the creation of the Earth.

© Energy Solutions Center Inc. & Frontier Energy – All Rights Reserved

Nuclear

Nuclear fusion generation uses energy generated from the forced **combination** of light materials into heavier ones at an atomic level to drive mechanical processes that can be converted into electricity.

Source: The quantum phenomena atoms experience when forcibly combined.

Mechanism: A controlled combination of materials at an atomic level generates heat and other phenomena which can be captured and converted to electricity.

Some key equipment: **TBD.**

Upstream Processes: Suitable material must be extracted or collected from the Earth and processed before transport and use.

Original Source: Solar phenomena before the creation of the Earth.

© Energy Solutions Center Inc. & Frontier Energy - All Rights Reserved

energy

© Energy Solutions Center Inc.

Wind

Wind generation uses the natural movement of air to drive mechanical processes that can be converted into electricity.

Source: Movement of air between atmospheric areas of high and low pressure.

Mechanism: Moving air exerts kinetic force on objects as it is pulled through the atmosphere.

Some key equipment: Towers, blades, gearboxes, generators.

Upstream Processes: Few other than the construction of the turbines themselves.

Original Source: Uneven heating and cooling of the Earth by the sun generates areas of high and low air pressure, which causes wind as air moves from areas of high to low pressure.

© Energy Solutions Center Inc. & Frontier Energy - All Rights Reserved

11

Solar

Solar generation uses the energy inherent in light to drive mechanical or electrical processes that can be converted into electricity.

Source: Energy inherent in light from the sun.

Mechanism: The excitement of electrons created by light in certain combinations of materials which can drive electrical charge OR the heat generated by sunlight when concentrated which can be converted to kinetic forces on objects through the boiling and expansion of water into steam.

Some key equipment: Photovoltaic panels OR mirrors, boilers,

turbines, generators.

Upstream Processes: Few other than the construction of the solar panels or mirrors themselves. Original Source: Light from the sun, which in turn is a result of nuclear fusion.

© Energy Solutions Center Inc. & Frontier Energy – All Rights Reserved

12

© Energy Solutions Center Inc.

Geothermal

Geothermal generation uses the heat created and stored below the Earth's crust to drive mechanical processes that can be converted into electricity.

Source: Heat that radiates from the Earth's mantle into the outer crust.

Mechanism: Heat is brought up from below the ground and can be converted to kinetic forces on objects through the boiling and expansion of water into steam. Some key equipment: Wells, pumps, turbines, generators.

Upstream Processes: Few other than the construction of the wells and plants themselves. Original Source: Heat still present from the creation of the Earth, radioactive decay, gravitational pressure, and frictional heating in Earth's liquid mantel.

© Energy Solutions Center Inc. & Frontier Energy - All Rights Reserved

FR®NTIER energy

13

Processes for Power Generation

- Turbine-Driven Generation
- Internal Combustion Engines
- Steam Turbines
- Combined Cycle Systems
- Hydroelectric Power
- Fuel Cells, Wind Turbines
- Photovoltaic Systems
- More

© Energy Solutions Center Inc.

Gas Turbines

Turbines are devices that can convert kinetic energy from a moving gas or fluid into mechanical energy.

Gas turbines ignite fuel with an oxidizer (air) at high pressure and velocity, and direct the hot gases from the burning fuel onto blades which create torque on a central shaft, causing it to spin.

This spinning shaft can be used to spin magnets or coils in a **generator**. The movement and constant switching of polarity of magnetic fields through coils of wire creates electricity.

Power plants that commonly rely on gas turbines:

- Natural gas
- o Oil

Common efficiency at converting fuel to electricity ≈ 30% - 50%

By United States Department of Energy http://www.netl.doe.gov/scng/projects/enduse/at/images/at31176 , Public Domain, https://commons.wikimedia.org/w/index.php?curid=1502086

© Energy Solutions Center Inc. & Frontier Energy — All Rights Reserved

15

Internal Combustion Engines

Internal combustion engines are **heat engines** that convert kinetic energy from the rapid expansion of burning fuel in a confined space into mechanical energy.

These engines ignite fuel with an oxidizer (air) in a **combustion chamber**, which causes the resulting high temperature and pressure gases to exert force on a component that creates torque on a central shaft, causing it to spin.

Internal combustion engines, like gas turbines, must be paired with a **generator** to produce electricity.

Power plants that commonly rely on internal combustion engines:

- Natural gas
- o Oil (Deisel)

Common efficiency at converting fuel to electricity ≈ 30% - 50%

By Jean-Daniel Drapeau-Mc Nicoll - De l'usine d'épuration des eaux usées de Montréal, CC BY-SA 3.0,

© Energy Solutions Center Inc. & Frontier Energy – All Rights Reserved

FR®NTIER energy

16

© Energy Solutions Center Inc.

Steam Turbines

Steam turbines are driven by high-pressure steam, generated by boiling water in a confined space. The pressurized steam pushes against blades which create torque on a central shaft, causing it to spin.

As before this spinning shaft can be used to spin magnets or coils in a **generator**, generating electricity.

Power plants that commonly rely on steam turbines:

- Nuclear
- Coal

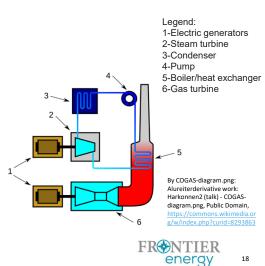
Common efficiency at converting fuel to electricity \approx 30% - 50%

17

© Energy Solutions Center Inc. & Frontier Energy – All Rights Reserved

Combined Cycle Systems

Combined cycle power plants improve on the efficiency of traditional gas turbine and steam turbine power plants by combining them. Fuel is burned in a gas turbine to drive a generator, and waste heat from this process is then used to boil water into steam which is used to drive a steam turbine with generator.


Power plants that commonly use combined cycle:

- Natural gas
- o Oil

Common efficiency at converting fuel to electricity \approx 60%

© Energy Solutions Center Inc. & Frontier Energy – All Rights Reserved

© Energy Solutions Center Inc.

Hydroelectric Power

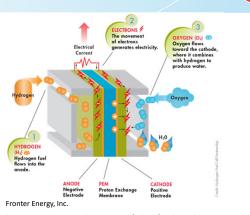
Hydroelectric power plants use various designs of hydro turbines to convert kinetic energy from water movement due to gravity into mechanical energy.

These turbines are driven by water hitting or flowing through them, often using blades, to create torque on a central shaft, causing it to spin.

Once again, this rotation is used in an electrical generator.

FR®NTIER energy

19


© Energy Solutions Center Inc. & Frontier Energy - All Rights Reserved

Fuel Cells

Fuel cells use an electrochemical reaction to convert chemical energy stored in a fuel into electrical energy.

Hydrogen fuel cells are the most common fuel cell. Hydrogen releases energy when combined with oxygen in the air, making water. When done by simple burning, this generates heat. In a fuel cell, this combination of molecules is more controlled than in combustion.

Hydrogen fuel cells use a catalyst to separate hydrogen protons from their electrons. These two components follow different pathways to recombine with oxygen, creating water. The separate flow of electrons through a circuit in this pathway is electricity.

The promise of hydrogen fuel cells is clean energy with higher efficiency than regular combustion of the fuel and without harmful emissions. Hydrogen takes energy to produce, however. Depending on the energy used, these benefits are diminished.

© Energy Solutions Center Inc. & Frontier Energy – All Rights Reserved

energy

20

© Energy Solutions Center Inc.

Wind Turbines

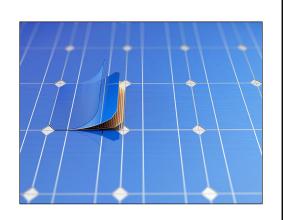
Wind turbines are devices that can convert kinetic energy from naturally occurring wind into mechanical energy.

Wind hits the blades of a large structure, which creates torque on a central shaft, causing it to spin.

Again, this is paired with an electric generator to produce electricity.

Collections of wind turbines (farms) are often categorized as **onshore** or **offshore**, which describes whether they are installed on land or in the water.

© Energy Solutions Center Inc. & Frontier Energy – All Rights Reserved



21

Photovoltaic

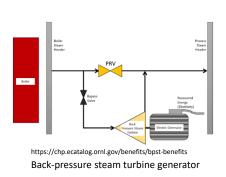
Photovoltaic solar cells are devices that capture energy from sunlight and, through the photovoltaic effect of special semiconducting materials, convert it directly into electricity.

Sunlight is absorbed by a semiconducting material that has been modified to create a "p-n junction." This sunlight excites electrons in the material, separating them from holes, which each take different paths to be recombined in the material. The separate flow of electrons through a circuit in this pathway is electricity.

© Energy Solutions Center Inc. & Frontier Energy – All Rights Reserved

FR®NTIER energy

22

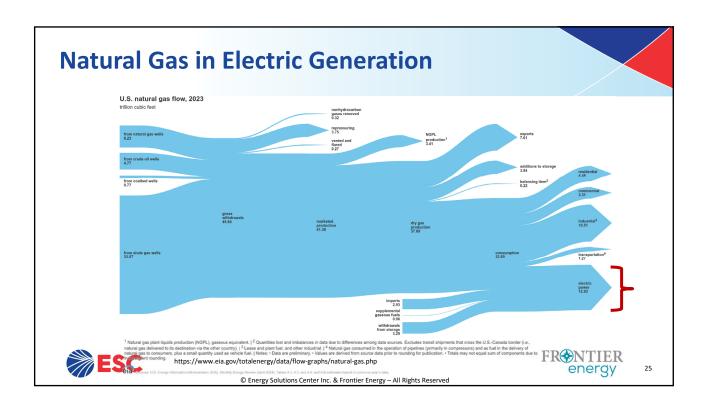

© Energy Solutions Center Inc.

More

Other forms of power generation include:

- Wave capture through the use of rotational or linear generators.
- Energy from natural gas pressure reducing stations captured by linear generators.
- Back-pressure steam turbine generators which can capture electricity from reducing high-pressure steam from a process to lower-pressure steam that can be used for heating or another process.
- Methane in the form of biogas can be created or captured from wastewater treatment, landfills, and industrial digesters fed organic waste to be burned for electricity generation.

© Energy Solutions Center Inc. & Frontier Energy – All Rights Reserved


23

Role of Natural Gas in Electric Generation

- Combined Cycle
- Simple-Cycle Plants

© Energy Solutions Center Inc.

Natural Gas in Electric Generation

Natural gas serves a critical role in electric generation. Not only does its inclusion amongst other sources of electricity diversify and strengthen the grid, it:

- Is **flexible** and **responsive**, serving as both baseline and peaking generation.
- It is **cost-effective**: cheaper than many alternative fuels and needing lower capital investment than some other electricity sources to be brought online.
- It has **fewer harmful emissions** and waste products than other fossil fuels used for electrical generation.
- It can be sourced domestically in the US, building energy independence.
- It can be stored in meaningfully large amounts.
- Infrastructure is well established, creating a lower barrier to expansion of electrical generation services.

FR®NTIER energy

26

© Energy Solutions Center Inc. & Frontier Energy – All Rights Reserved

© Energy Solutions Center Inc.

Simple Cycle Plants

Simple cycle plants – Gas or oil burning plants that use just one gas turbine to generate electricity with no waste heat recovery.

Benefits:

- Low capital cost
- Fast construction
- Quick to reach full power

Downsides:

Efficiency caps below 50%

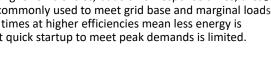
Due to the lower efficiencies, but faster response times, these plants are commonly used to meet peaking grid demand. Low run times mean less energy is wasted, but power is there if/when needed.

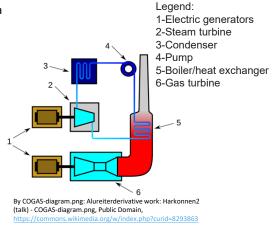
© Energy Solutions Center Inc. & Frontier Energy - All Rights Reserved

27

Combined Cycle Plants

Combined cycle plants - Gas or oil burning plants that use both a gas turbine and a steam turbine to generate electricity, recovering waste heat from the first process for the second.

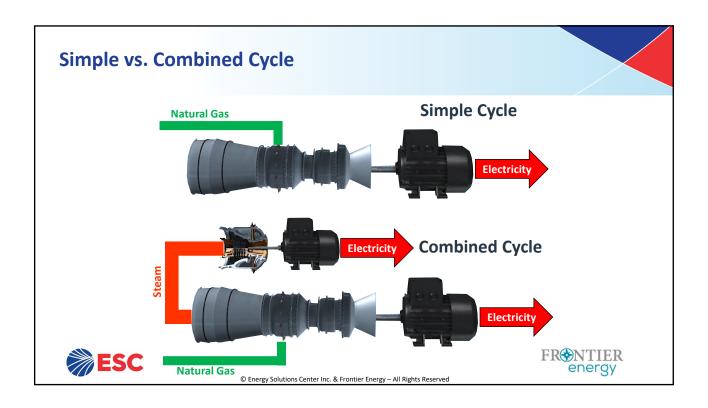

Benefits:

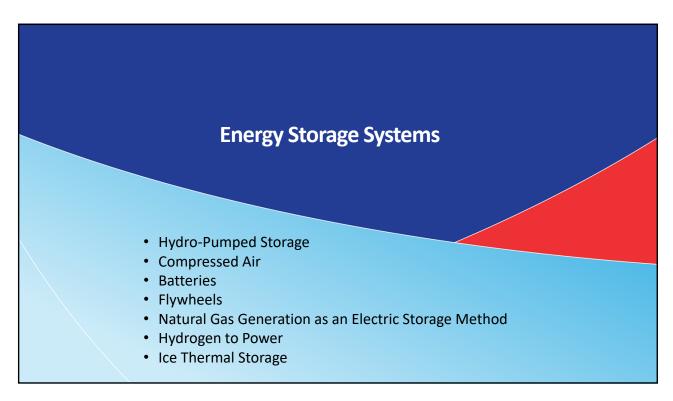

- Efficiencies around 60%
- Quick to produce power

Downsides:

- Higher capital cost
- Slower construction
- Slow to reach full power

Due to the higher efficiencies, but slower response times, these plants are commonly used to meet grid base and marginal loads. Longer run times at higher efficiencies mean less energy is wasted, but quick startup to meet peak demands is limited.


FR*****NTIER energy



© Energy Solutions Center Inc. & Frontier Energy – All Rights Reserved

© Energy Solutions Center Inc.

© Energy Solutions Center Inc.

Energy Storage

Energy storage is an old, but rapidly developing piece of the electricity grids. While traditional batteries have been around since the 1800s, grid-scale storage has not been possible with this technology until relatively recently. Hydro-pumped storage, on the other hand, has been around since the early 1900s.

Energy storage gives electrical grids flexibility in production and use. It fills a key gap between the two and is critical for:

- Reducing energy losses.
- Reducing energy costs by shifting peak loads to periods of low demand when generation is cheaper.
- Ensuring grid stability during unexpected events.
- More effectively integrating intermittent power sources, such as wind and solar, into the grid.

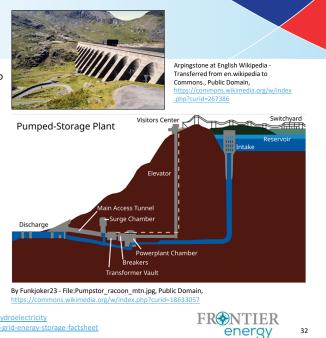
© Energy Solutions Center Inc. & Frontier Energy - All Rights Reserved

Source: https://en.wikipedia.org/wiki/Pumped-storage hydroelectricity

31

Hydro-Pumped

Hydro-pumped storage plants use excess energy from the grid to pump water from a low elevation to a higher one.


When this energy is needed, water is used to drive turbines, just as with standard hydroelectric power plants.

- Proven, dependable technology
- Scale-able
- Long-lasting

- Limited to geographically accommodating regions
- New reservoirs can have great environmental and social
- Medium grid responsiveness

First grid-scale implementation: Early 1900s

Efficiency: 70% - 85%

© Energy Solutions Center Inc. & Frontier Energy – All Rights Reserved

© Energy Solutions Center Inc.

Pumped Storage

Pumped Hydroelectric Storage (Hydro): Cost & Performance Specifications				
Discharge Duration	6 - 24 hours			
Capital Costs (\$/kW; \$/kWh)	\$1,500 – 1,700; \$150 – 180			
O&M Costs (\$/kW-year)	\$13 – 17			
Fuel Cost to Operate (\$/kWh)	\$0.08 - 0.09			
Energy Capacity (based on existing installations)	Up to 40,000 MWh			
Power Capability (based on existing installations)	4,000 MW			
Expected Life	50 - 60 years			
Roundtrip Efficiency	75 - 85% (evaporation contributes to efficiency losses)			
Energy Density (Wh/L)	~2			
Power Density (W/L)	~1.5			
Dispatch Response Time	Seconds to Minutes			
Technology Applications	Baseload generation and large-scale bulk energy storage Peak shaving and frequency/voltage regulation			
Technology Drawbacks	Siting requirements and environmental concerns can be inhibitive (no new installations since 1980's); high capacity floor			

.

33

nergy Storage Comparison Analysis with Gas-Fueled Technologies, ICF
© Energy Solutions Center Inc. & Frontier Energy – All Rights Reserved

Compressed Air

Compressed air storage (CAES) plants use excess energy from the grid to pump air into a confined space, effectively storing this energy as pressure.

When this energy is needed, air is released to drive turbines. If air can be heated before expansion, efficiency can improve. Systems that store and utilize heat generated during compression, or use the assistance of a natural gas for this, are options.

COMPRESSED AIR ENERGY STORAGE

Benefits:

Use existing natural underground formations.

Scale-able

Long-lasting

Shortfalls:

Limited to geographically accommodating regions, such as those with underground salt domes.

Poor planning or management can cause negative environmental impacts.

First grid-scale implementation: Late 1970s

Source: https://en.wikipedia.org/wiki/Compressed-air energy storage https://css.umich.edu/publications/factsheets/energy/us-grid-energy-storage-factsheet

 $\hbox{@}$ Energy Solutions Center Inc. & Frontier Energy – All Rights Reserved

FR®NTIER energy

CAES

34

© Energy Solutions Center Inc.

Compressed Air Storage

Underground Compressed Air to Power (CAES): Cost & Performance Specifications				
Discharge Duration	4 - 24 hours			
Capital Costs (\$/kW; \$/kWh)	\$1,000 – 1,200; \$100 – \$120			
O&M Costs (\$/kW-year)	\$16 – 18			
Fuel Cost to Operate (\$/kWh)	\$0.09 - 0.17			
Energy Capacity (based on existing installations)	Up to 2,500 MWh			
Power Capability (based on existing installations)	>100 MW			
Expected Life	20 - 40 years			
Roundtrip Efficiency	41 - 75%			
Energy Density (Wh/L)	~12			
Power Density (W/L)	~0.5			
Dispatch Response Time	5 - 15 minutes			
Technology Applications	Baseload generation and large-scale bulk energy storage Peak shaving and frequency/voltage regulation			
Technology Drawbacks	Siting requirements can be inhibitive; high capacity floor			

Energy Storage Comparison Analysis with Gas-Fueled Technologies, ICF

© Energy Solutions Center Inc. & Frontier Energy – All Rights Reserved

FR®NTIER energy

35

Batteries

Batteries use excess energy from the grid to create chemical reactions that store this energy chemically in a material or fluid.

When this energy is needed, this chemical reaction can be reversed to release this stored energy. There are numerous different types of batteries in use or in development.

Benefits:

- Versatile
- High grid responsiveness

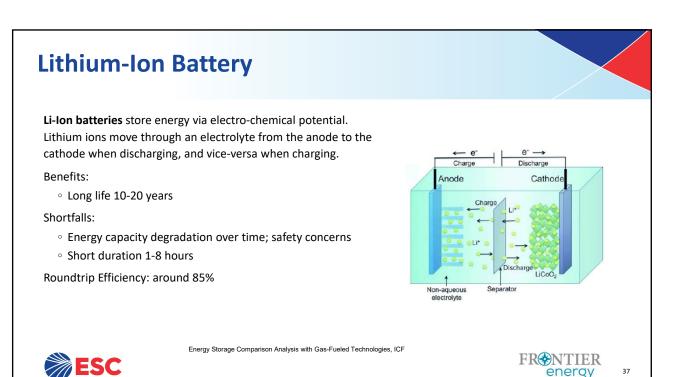
Shortfalls:

- Limited capacity and lifespan
- Costly

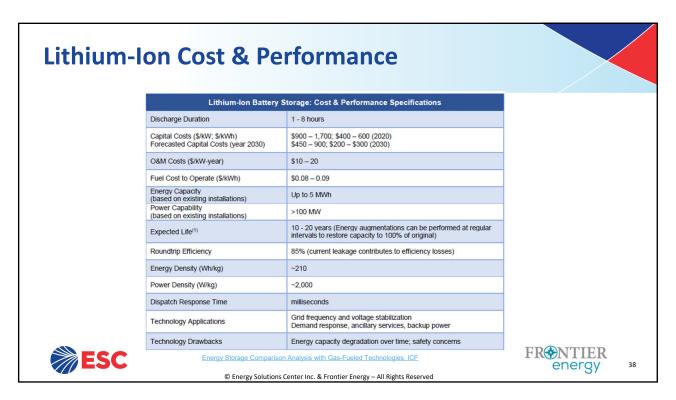
First grid-scale implementation: Early 2010s

Efficiency: 60% - 95%

 $\label{lem:source:https://ravenvolt.com/blog/the-evolution-of-battery-storage-solutions/https://css.umich.edu/publications/factsheets/energy/us-grid-energy-storage-factsheets/energy-storage-factshee$

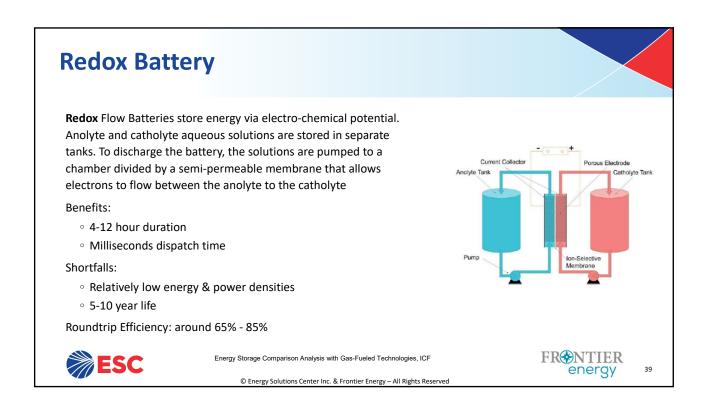

© Energy Solutions Center Inc. & Frontier Energy – All Rights Reserved

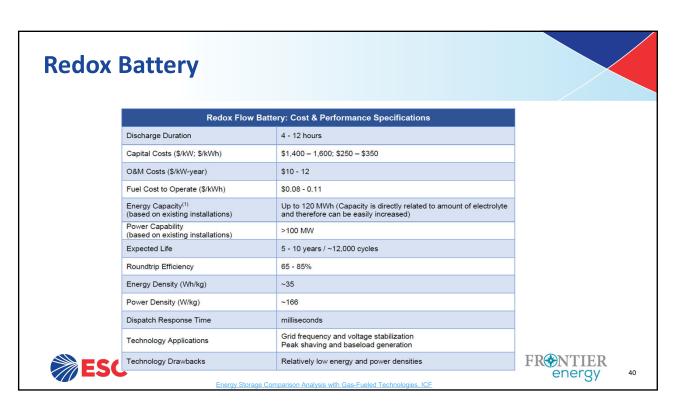
FR®NTIER energy


6

© Energy Solutions Center Inc.

© Energy Solutions Center Inc. & Frontier Energy - All Rights Reserved


© Energy Solutions Center Inc.


No portion of this material may be reproduced without the expressed written consent of the Energy Solutions Center Inc.

37

energy

© Energy Solutions Center Inc.

Flywheels

Flywheels use excess energy from the grid to spin large, heavy cylinders in very low friction environments, storing this energy as mechanical energy.

When this energy is needed, the spinning flywheels are used to turn generators that convert this mechanical energy back into electrical energy.

Benefits:

- Long life
- High grid responsiveness

Shortfalls:

Limited capacity

First grid-scale implementation: Early 2000s

Efficiency: around 85%

By Pjrensburg - a rendering from a solid-works model, edited to include labels, in png formatPreviously published: 2012-04-29, CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?curid=19258681

Source: https://en.wikipedia.org/wiki/Flywheel_energy_storage https://css.umich.edu/publications/factsheets/energy/us-grid-energy-storage-factsheet

© Energy Solutions Center Inc. & Frontier Energy – All Rights Reserved

41

Flywheel Cost & Performance

Flywheel Energy Storage: Cost & Performance Specifications				
Discharge Duration	minutes – 2 hours			
Capital Costs (\$/kW; \$/kWh)	\$2,000 - 4,000; \$10,000 - \$15,000			
O&M Costs (\$/kW-year)	\$10 - 20			
Fuel Cost to Operate (\$/kWh-year)	\$0.08 - 0.10			
Energy Capacity (based on existing installations)	Up to 5 MWh			
Power Capability (based on existing installations)	>10 MW			
Expected Life	100,000 cycles			
Roundtrip Efficiency	70 - 90% (friction contributes to efficiency losses)			
Energy Density (Wh/kg)	20 – 80			
Power Density (W/kg)	~5,000			
Dispatch Response Time	< 4 milliseconds			
Technology Applications	Grid frequency and voltage stabilization Uninterruptable power supply (UPS)			
Technology Drawbacks	40 – 100% energy capacity loss / 24 hours			

ESC

Energy Storage Comparison Analysis with Gas-Fueled Technologies, ICF

© Energy Solutions Center Inc. & Frontier Energy – All Rights Reserved

FR®NTIER energy

42

© Energy Solutions Center Inc.

Natural Gas Generation

Since natural gas is a physical product that can be stored for later use, it can be considered an energy storage solution. This is different from how much of the natural gas grid operates: natural gas is generated at about the rate it is consumed.

With **natural gas energy storage and generation**, large amounts of natural gas are stored either underground or as liquified natural gas (LNG) in tanks. This can then be called upon during periods of high demand when other generating sources aren't available or cost-effective to run.

12

© Energy Solutions Center Inc. & Frontier Energy – All Rights Reserved

Natural Gas – Industrial CHP

Industrial CHP systems have long been used in industrial manufacturing plants for electricity generation and steam

that is used in manufacturing processes.

Benefits:

> 24 hours of duration Milliseconds response time ortfalls:

Engineering and design is complex Efficiency: 70% - 80%

Energy Storage Comparison Analysis with Gas-Fueled Technologies, ICF

© Energy Solutions Center Inc. & Frontier Energy – All Rights Reserved

FR®NTIER energy

44

© Energy Solutions Center Inc.

Natural Gas – Industrial CHP

Industrial CHP: Cost & Performance Specifications				
Discharge Duration	>24 hours			
Capital Costs (\$/kW, \$/kWh)	\$1,200 – 1,800			
O&M Costs (\$/kW-year)	\$30-45/kW-year (FOM), ~\$10/MWh (VOM)			
Fuel Cost to Operate (\$/kWh)	\$0.015 – 0.020, including thermal credit			
Energy Capacity (based on existing installations)	~5,000 - 80,000 MWh (in addition to onsite generation)			
Power Capability (based on existing installations)	~1-20 MW (in addition to onsite power generation)			
Expected Life	15 - 20 years			
Roundtrip Efficiency	Recip. Engine: 70-80%; Gas Turbine: 70-75% (CHP efficiency, HHV)			
Dispatch Response Time	Milliseconds to seconds (depends on operational status)			
Technology Applications	Baseload onsite generation, demand response, spinning reserve, other grid services			
Technology Drawbacks	Engineering and design process can be complex			

Energy Storage Comparison Analysis with Gas-Fueled Technologies, ICF

© Energy Solutions Center Inc. & Frontier Energy – All Rights Reserved

45

Natural Gas – Modular Engines

Modular Gas Engines fueled by natural gas are a mature technology, commonly used in both power generation and CHP applications.

Benefits:

> 24 hours of duration

Milliseconds to minutes response time

Shortfalls:

High maintenance Efficiency: 36% - 42%

Reciprocating Engine Power Plant (source: Wartsila)

Energy Storage Comparison Analysis with Gas-Fueled Technologies, ICF

© Energy Solutions Center Inc. & Frontier Energy – All Rights Reserved

FR®NTIER energy

•

© Energy Solutions Center Inc.

Natural Gas – Modular Gas Engines

Modular Gas Engines: Cost & Performance Specifications				
Discharge Duration	>24 hours			
Capital Costs (\$/kW, \$/kWh)	\$1,300 – 1,800			
O&M Costs (\$/kW-year)	\$35/kW-year (FOM), ~\$6/MWh (VOM)			
Fuel Cost to Operate (\$/kWh-year)	\$0.03 - 0.05			
Energy Capacity (based on existing installations)	20,000 – 40,000 MWh per engine			
Power Capability (based on existing installations)	5 - 10 MW per engine			
Expected Life	~30 years			
Efficiency	36 – 42% (electrical efficiency, HHV)			
Dispatch Response Time	Milliseconds to minutes (depends on operational status)			
Technology Applications	Peak power, demand response, spinning reserve, grid support for variable loads			
Technology Drawbacks	Relatively high maintenance, requires support to manage vibration			

nergy Storage Comparison Analysis with Gas-Fueled Technologies, IC

© Energy Solutions Center Inc. & Frontier Energy – All Rights Reserved

47

Fuel Cells & Electrolysis

While batteries can use a diverse set of chemical reactions to store and release energy, fuel cells are a unique technology on their own. They can be paired with electrolysis to work like batteries.

Electrolysis – Splitting of water into hydrogen and oxygen using electricity.

Fuel Cell – Combines hydrogen and oxygen into water, producing electricity.

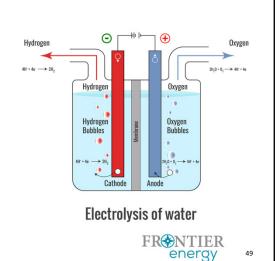
Both processes have been around for decades. The benefits of electrolysis and fuel cells are their:

- Absence of moving parts.
- o Absence of advanced chemicals or reactions.
- Absence of unwanted byproducts.

© Energy Solutions Center Inc. & Frontier Energy – All Rights Reserved

8

© Energy Solutions Center Inc.

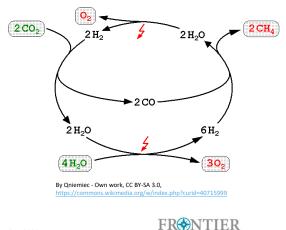


Electrolysis

Electricity can be converted into stored energy in the form of hydrogen fuel through **electrolysis**.

Using an anode and a cathode separated by a membrane and separate gas collection systems, both hydrogen and oxygen gas can be collected from the splitting of water (H₂O) molecules using electricity.

Excess electricity from the grid during off-peak times can be stored this way.


© Energy Solutions Center Inc. & Frontier Energy – All Rights Reserved

Power to Gas (P2G)

Hydrogen from electrolysis can be used in multiple ways.

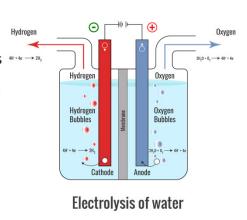
Power to gas (P2G) – Natural gas can be created from carbon dioxide and water through processes of electrolysis and methanation combined. This can be used for any natural gas end use, including natural gas engines or turbines that can turn this energy back into electricity.

It's important to note that each additional step added to energy conversion from one form to another introduces inefficiencies.

energy

Source: https://en.wikipedia.org/wiki/Power-to-gas https://energsustainsoc.biomedcentral.com/articles/10.1186/s13705-014-0029-1

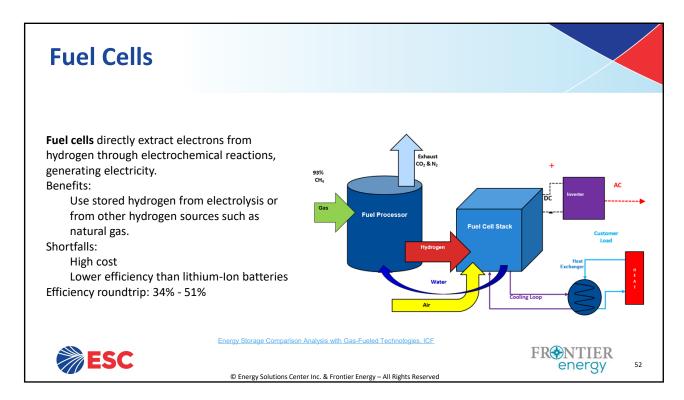
© Energy Solutions Center Inc. & Frontier Energy – All Rights Reserved


© Energy Solutions Center Inc.

Power to Hydrogen

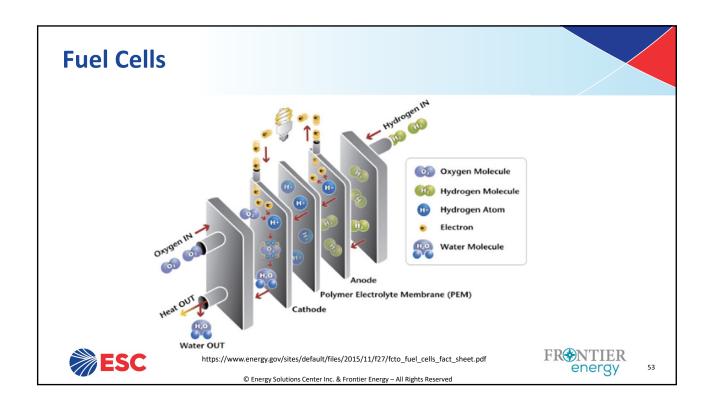
Reducing inefficiencies in converting electricity to hydrogen, then to natural gas, then back to electricity is key.

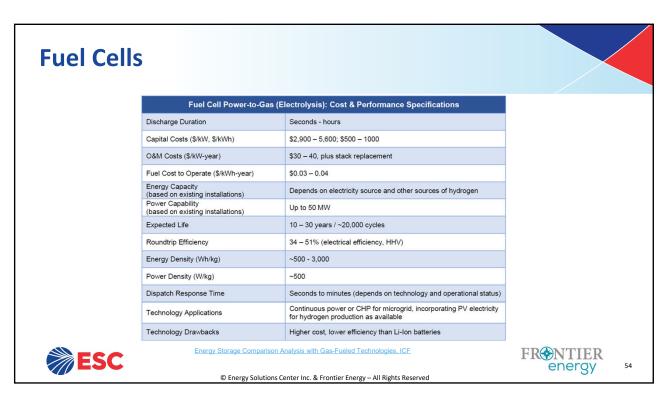
Hydrogen to power – Similar to "power to gas", this which are process uses excess grid electricity and electrolysis to split water into hydrogen and oxygen. Instead of going an extra step with methanation, the process stops here with hydrogen as the store-able fuel for later use by burning or fuel cells. Electricity can be generated with this hydrogen at a later time with a fuel cell.


FRINTIER

energy

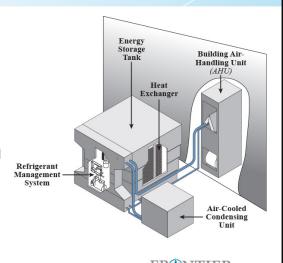
51




© Energy Solutions Center Inc. & Frontier Energy - All Rights Reserved

© Energy Solutions Center Inc.

© Energy Solutions Center Inc.



Ice Thermal Storage

Ice thermal storage is a way to use excess energy during low-demand periods on the grid to shave peak loads created by customer cooling needs.

During low-demand periods on the grid, often at night when outside temperatures are naturally cooler, chillers use energy to produce ice in well insulated containers.

During peak demand periods, stored ice can be used for building cooling needs with chilled water circulation loops tied into the building's HVAC system. This prevents the need for chillers or ACs to run during peak times.

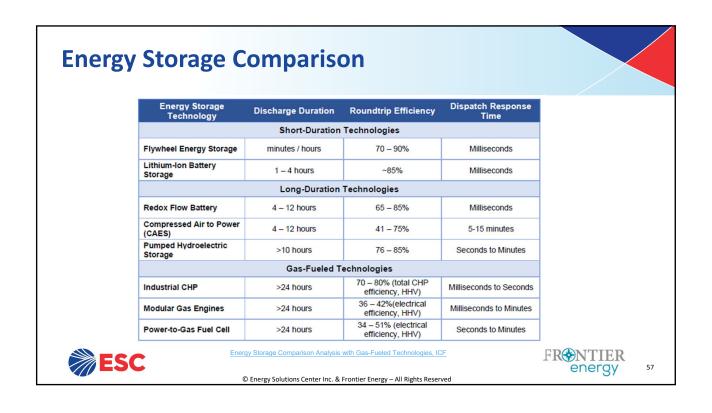
55

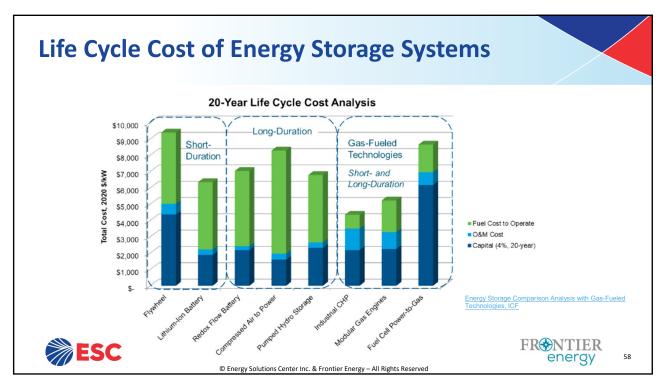
energy

FRONTIER

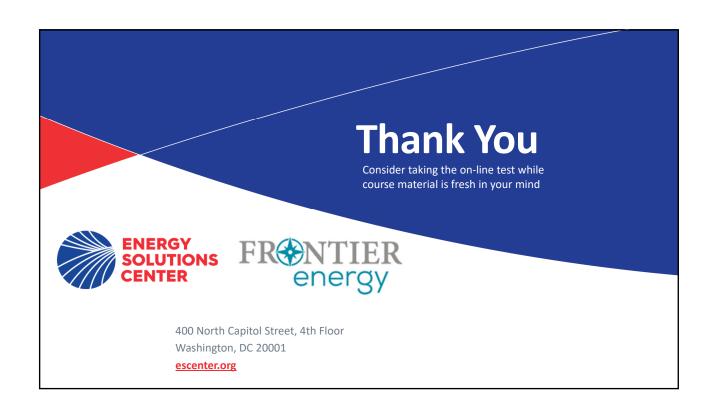
energy

© Energy Solutions Center Inc. & Frontier Energy - All Rights Reserved


Cost Comparison of Energy Storage Technologies


Technology	Primary Application	Capital Costs (\$/kW)	O&M Costs (\$/kW-year)	Fuel Cost to Operate (\$/kWh)
	Shor	t-Duration Technologie	s	
Flywheel Energy Storage	Small-scale frequency and voltage stabilization	\$2,000 - 4,000	\$10 – 20	\$0.08 - 0.10
Lithium-Ion Battery 2020	Small-to-large demand response, ancillary services, frequency/ voltage stabilization	\$900 – 1,700	\$10 – 20	\$0.08 - 0.09
Lithium-Ion Battery 2030		\$450 - 900	\$5 – 10	\$0.08 - 0.09
	Long	-Duration Technologie	s	
Redox Flow Battery	Industrial-scale peak shaving, frequency/ voltage stabilization	\$1,400 – 1,600	\$10 – 12	\$0.08 - 0.11
Compressed Air to Power	Utility-scale baseload generation and peak shaving	\$1,000 – 1,200	\$16 – 18	\$0.09 - 0.17
Pumped Hydro- electric Storage	Utility-scale baseload generation and peak shaving	\$1,500 – 1,700	\$13 – 17	\$0.08 - 0.09
	Gas	s-Fueled Technologies		
Industrial CHP	Industrial-scale demand response, spinning reserve	\$1,200 – 1,800	\$30-\$45/kW-year, ~\$10/MWh	\$0.015 - 0.020
Modular Gas Engines	Demand response, spinning reserve, balancing renewables	\$1,300 – 1,800	\$35/kW-year, ~\$6/MWh	\$0.03 - 0.05
Power-to-Gas Fuel Cell	Convert excess electricity to hydrogen for time shifting	\$2,900 - 5,600	\$30 – 40/kW-year, plus stack replacement	\$0.03 - 0.04

© Energy Solutions Center Inc. & Frontier Energy – All Rights Reserved



© Energy Solutions Center Inc.

